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Principle of Least Effort

[0 George Kingsley Zipf’s principle states that people and even
well designed machines will naturally choose the path of least
effort.

O This is the same for us!

O If we can get to the same
solution, lets choose the
path that requires the
least amount of work.
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What We Want

0 We want to correct amplitudes and regularize reflector
Information throughout the image.

[0 Stabilize the problem and improve convergence rates.
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Why do we need a (pre)conditioner?

0 In the seismic world, we deal with extremely large data-sets.

— Requires a lot of time to do simple operations.
— Even more time to apply just one migration!

[ lIterative solvers require significant resources and time.
— We need to reduce the number of iterations.

0 We would like to stabilized the problem.
— Applying small changes will still allow our LSQR algorithm to converge.

O Principle of Least Effort!
— We want to do all these with the least amount of work.




Why do we need a (pre)conditioner?

SOLUTION? PRECONDITIONING!
[0 Preconditioning allows us to increase the convergence of
iterative solvers.

0 Reduces the number of iterations.
[0 Reduces the overall time required.
0 And gives us an improved result!

0 Preconditioners don’'t have to be exact.

0 Our examples none of the preconditioners were
computed to convergence.

00 Still see significantly improved amplitudes.

[0 Satisfies Principle of Least Effort!




Our Problem

0 During seismic imaging, the following system of equations
needs to be solved:

Ax~Db
O Inverting this equation we get:

XLs = (A*A) "A*b:= A'b

0 This involves the inversion of the normal equations.
— With large data, these become quite difficult to compute efficiently.

O Inverting this is not so trivial and we will need to use
iterative matrix-free methods such as LSQR.




Our Problem

O Inverting this is not so trivial because of the size:

~ 1
X715 = arg min §Hb — Ax||3

[0 We want to condition this as well as possible.

[0 With accurate background velocity this iterative solution is
known to converge quickly.

— The sheer size of the problem however makes this a very time consuming
problem.

[0 Areduction in the number of iterations will be necessary!




Our Solution

[]

We propose to do this by replacing our initial system with a
series of preconditioning levels:

M;'AM;'u~M;'b, x:=M;'u

This involves a series of right and left preconditioning matrices.

These preconditioning matrices all compound together and
produce a solid reduction of residual errors per iteration.

The cost for applying these preconditioners is just a matrix
multiplication in the respected domain.




Our Solution

1 Our preconditioners are derived from the following three
observations:

[0 the normal operator is in d dimensions a (d-1)-order
pseudo-differential operator

[ migration amplitudes decay with depth due to spherical
spreading of seismic body waves

[1 zero-order pseudo-differential operators can be
approximated by a diagonal scaling in the curvelet
domain




Levels of Preconditioning

[0 We propose three levels of preconditioning:

0 Level | - Scaling in the Fourier domain.
— Fractional differentiation.
— Approximate a (d-1)-order pseudo-differential operator.
— Improve low-frequency components.

0 Level Il - Scaling in the physical domain.

— Depth correction.
— Corrects for amplitude decay of the migration code.

0 Level lll - Scaling in the curvelet domain.

— Curvelet-based diagonal estimation.
— Restores amplitudes throughout the image.




Levels of Preconditioning P <

O In data space we apply a multiplication in the temporal Fourier
domain.

[0 This can be thought as a left preconditioning through fractional
differentiation:

—1 . a—1/2
M =0,

0 Some low-frequency content is restored.

[0 Sets up the curvelet-based diagonal estimation by
approximating a (d-1)-order pseudo-differential operator.




Levels of Preconditioning

00 Right preconditioning by scaling in the physical domain:

1
2

M =D, := diag (z)

0 Reflected waves travel from the source at the surface down to
the reflector and back.

[0 This gives a quadratic depth dependence.

0 Everything is compounded together. This can be removed if
desired.




Levels of Preconditioning 00, -
[0 Right preconditioning by scaling in the curvelet domain:
Ur ~ C*DyCr, Dy :=diag(d?)
M:' =D.C*Dy’

[0 Estimation of the diagonal in the curvelet domain.

[0 The cost to compute this diagonal is one migration and one
remigration.
— This is equivalent to one iteration of LSQR.

0 Improves amplitudes throughout the image.




Levels of Preconditioning 0.0,

CONSTRUCTING THE CURVELET DIAGONAL.

[0 We require a migrated and re-migrated image.
0 We use one lambda parameter to control smoothing.

[0 We then solve the system with a limited memory Quasi-
Newton method: L-BFGS.

— No need to solve to convergence, approximating the diagonal is good enough.
— Can see a rough approximation already improves imaged results.

[0 More information about this process can be found in the
references.




Levels of Preconditioning

WHY CURVELETS?

0 Well-documented approximate invariance of curvelets under
the linearized Born-scattering operator.

— Consequently the columns of the preconditioned system are curvelet like.

— For instance, small shifts over the support of a curvelet will not adversely affect
the corresponding curvelet coefficient.

[0 Redundancy of the curvelets.

— Makes this transform less prone to errors in individual entries in the curvelet
vector.

[0 Redundancy spreads coherent noise over more coefficients.

— A small subset of localized curvelets contribute to a particular feature. Thus only
a small fraction of the ‘noise’ will contribute to the reconstruction.




Simple Synthetic Reflector w/ Lens Velocity

0 We will look at a simple three reflector w/ fault model.

0 Our hope is to correct amplitudes in the model.
— Each preconditioning level should improve amplitudes further.

[0 We also want to increase residual decay per iteration for our
iterative method.




Simple Synthetic Reflector w/ Lens Velocity

Lateral (m)
0 500 1000 1500 2000 2500

0

1000 500

0 Simple reflector w/ fault
reflectivity.

Depth (m)
1500

[0 Low velocity lens model.

2500 2000

0 40 shots. Lateral (m)

500 1000 1500 2000 2500
| | | | |

0
o

0 We use the linearized
Born-scattering forward
modeling operator to
produce the data.

2.8

1500 1000 500
2.6

Depth (m)
2.4

2500 2000
2.2




Slmple Synthetic Reflector w/ Lens Velgcity

1000 1500 2000 2500 500 1000 1500 2000

600
600

Depth (m)

1600 1400 1200 1000 800

~

~—
=
-+

o
O

(@)
(@)
00
(@]
O
o
(@)
(@)
™~
o
(@)
<
O
o
O

No Preconditioning Level |
Lateral (m) Lateral (m)
1000 1500 2000 2500 1000 1500 2000

600
600

Depth (m)

Depth (m)
1600 1400 1200 1000 800

1600 1400 1200 1000 800

Level [l




Simple Synthetic Reflector w/ Lens Velocity
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Simple Synthetic Reflector w/ Lens Velocity

[0 Signal-to-Noise Ratio (SNR) to original reflectivity, after one
iteration.

0 Defined as follows, with L2 values normalized to one:

SNR = 20log |[xs|l2/[Ixn — %2

One iteration
SNR

No Preconditioning [0.9414

Level | 1.2779

Level Il 1.0652

Level Il 1.7166




Simple Synthetic Reflector w/ Lens Velocity
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Simple Synthetic Reflector w/ Lens Velocity

_15,

[0 Residual decay for the data-space and model-space residuals.

0 Even after our first iteration of level Ill preconditioning, we are
always below the other cases in each figure.

0 The red line has already seen one migration-remigration due
to the curvelet diagonal estimation process.
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SEG AA’ Model w/ Smooth Velocity

0 SEG AA' salt model.

0 Our goal is to improve amplitude recovery, especially for the
reflectors under the salt model.

[0 We also want to increase residual decay for our iterative
method.




SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity - LSQR Results
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SEG AA’ Model w/ Smooth Velocity - LSQR Results

Distance (m)
2000 4000 6000 &000 10000 12000 14000

—~

~—
C
.=H=.

Q.
©

LSQR 10 iterations - Level I1I




SEG AA’ Model w/ Smooth Velocity

[0 Signal-to-Noise Ratio (SNR) to original reflectivity.

0 Defined as follows, with L2 values normalized to one:

SNR = 201log ||xs|l2/||xn — Xs]|2

One iteration LSOR results*
SNR SNR
No Preconditioning |-1.9803 -0.9939
Level | -1.4147 0.3312
Level Il 0.4030 3.2690
Level Il 1.3122 3.3230

*LSQR to 10 iterations




SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity

[0 Residual decay for the data-space and model-space residuals.

[0 Even after our first few iterations of level Ill preconditioning, we
quickly improve upon the other levels in each figure.

0 The red line has already seen one migration-remigration due
to the curvelet diagonal estimation process.
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Conclusions

[0 We can achieve significant residual decay using our series
of preconditioning matrices.

0 Amplitudes throughout the model are recovered more
accurately to the original reflectivity.

[0 We do the same amount of work, but get a better result.

0 We satisfy Zipf’'s Principle of Least Effort!




Speculations on Real Data

[0 On real data our curvelet-based diagonal estimation should
greatly improve the image.
— Curvelets add robustness to the presence of coherent noise.
— Also moderates errors in the linearized Born modeling operator.

0 Small shifts over the support of a curvelet will not adversely
affect the corresponding curvelet coefficient.
— Allow imperfections in the velocity model.
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SLIMpy Web Pages

[0 More information about SLIMpy can be found at the SLIM
homepage:

http://slim.eos.ubc.ca

[0 Auto-books and tutorials can be found at the SLIMpy generated
websites:

http://slim.eos.ubc.ca/SLIMpy/
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