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Principle of Least Effort

� George Kingsley Zipf’s principle states that people and even 
well designed machines will naturally choose the path of least 
effort.

� This is the same for us!

� If we can get to the same 
solution, lets choose the 
path that requires the 
least amount of work.

Lazyman Rubik’s Cube
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Outline

� Motivation

� Definition of our Problem

� Preconditioning Levels:
– Level I - Fractional Differentiation

– Level II - Depth Correction

– Level III - Curvelet-based Diagonal Estimation

� Some Data Examples
– Simple Synthetic Reflector w/ Lens Velocity

– SEG AA’ Model w/ Smooth Velocity

� Conclusions
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� We want to correct amplitudes and regularize reflector 
information throughout the image.

� Stabilize the problem and improve convergence rates.

What We Want

No Preconditioning Full Preconditioning
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Why do we need a (pre)conditioner?

� In the seismic world, we deal with extremely large data-sets.
– Requires a lot of time to do simple operations.

– Even more time to apply just one migration!

� Iterative solvers require significant resources and time.
– We need to reduce the number of iterations.

� We would like to stabilized the problem.
– Applying small changes will still allow our LSQR algorithm to converge.

� Principle of Least Effort!
– We want to do all these with the least amount of work.
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SOLUTION? PRECONDITIONING!

Why do we need a (pre)conditioner?

� Preconditioning allows us to increase the convergence of 
iterative solvers.

� Preconditioners don’t have to be exact.  

� Satisfies Principle of Least Effort!

� Reduces the number of iterations.

� Reduces the overall time required.

� And gives us an improved result!

� Our examples none of the preconditioners were 
computed to convergence.

� Still see significantly improved amplitudes. 
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� During seismic imaging, the following system of equations 
needs to be solved:

� Inverting this equation we get:

� This involves the inversion of the normal equations.
– With large data, these become quite difficult to compute efficiently.

� Inverting this is not so trivial and we will need to use 
iterative matrix-free methods such as LSQR.

[Clearbout and Nichols, 1994]

Our Problem

[De Roeck, 2002]

[Rickett, 2003]

[Symes, 2008]

x̃LS =
(
A∗A

)−1
A∗b := A†b

Ax ≈ b
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Our Problem

� Inverting this is not so trivial because of the size:

� We want to condition this as well as possible.

� With accurate background velocity this iterative solution is 
known to converge quickly.

– The sheer size of the problem however makes this a very time consuming 

problem.

� A reduction in the number of iterations will be necessary!

[Paige and Saunders, 1982]

x̃LS = arg min
x

1
2
‖b − Ax‖2

2
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Our Solution

� We propose to do this by replacing our initial system with a 
series of preconditioning levels:

� This involves a series of right and left preconditioning matrices.

� These preconditioning matrices all compound together and 
produce a solid reduction of residual errors per iteration.

� The cost for applying these preconditioners is just a matrix 
multiplication in the respected domain.

M−1
L AM−1

R u ≈ M−1
L b, x := M−1

R u
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Our Solution

� Our preconditioners are derived from the following three 
observations:

� the normal operator is in d dimensions a (d-1)-order 
pseudo-differential operator

� migration amplitudes decay with depth due to spherical 
spreading of seismic body waves

� zero-order pseudo-differential operators can be 
approximated by a diagonal scaling in the curvelet 
domain

[Herrmann et al., 2008]

[Symes, 2008]
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Levels of Preconditioning

� We propose three levels of preconditioning:

� Level I - Scaling in the Fourier domain.
– Fractional differentiation.

– Approximate a (d-1)-order pseudo-differential operator.

– Improve low-frequency components.

� Level II - Scaling in the physical domain.
– Depth correction.

– Corrects for amplitude decay of the migration code.

� Level III - Scaling in the curvelet domain.
– Curvelet-based diagonal estimation.

– Restores amplitudes throughout the image.
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Levels of Preconditioning

� In data space we apply a multiplication in the temporal Fourier 
domain. 

� This can be thought as a left preconditioning through fractional 
differentiation:

� Some low-frequency content is restored.

� Sets up the curvelet-based diagonal estimation by 
approximating a (d-1)-order pseudo-differential operator.

L2 L3L1L1

M−1
L := ∂

−1/2
|t|
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Levels of Preconditioning

� Right preconditioning by scaling in the physical domain:

� Reflected waves travel from the source at the surface down to 
the reflector and back.

� This gives a quadratic depth dependence.

� Everything is compounded together. This can be removed if 
desired.

L2 L3L1 L2

M−1
R = Dz := diag

(
z
) 1

2
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L3L3Levels of Preconditioning

� Right preconditioning by scaling in the curvelet domain:

� Estimation of the diagonal in the curvelet domain.

� The cost to compute this diagonal is one migration and one 
remigration.

– This is equivalent to one iteration of LSQR.

� Improves amplitudes throughout the image.

L2L1

[Herrmann et al., 2008]

Ψr ≈ C∗D2
ΨCr, D2

Ψ := diag
(
d2

)

M−1
R = DzC∗D−1

Ψ
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L3L3

CONSTRUCTING THE CURVELET DIAGONAL.

Levels of Preconditioning

� We require a migrated and re-migrated image.

� We use one lambda parameter to control smoothing.

� We then solve the system with a limited memory Quasi-
Newton method: L-BFGS.

– No need to solve to convergence, approximating the diagonal is good enough.

– Can see a rough approximation already improves imaged results.

� More information about this process can be found in the 
references.

L2L1

[Herrmann et al., 2008]
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L3L3

WHY CURVELETS?

Levels of Preconditioning

� Well-documented approximate invariance of curvelets under 
the linearized Born-scattering operator.

– Consequently the columns of the preconditioned system are curvelet like.

– For instance, small shifts over the support of a curvelet will not adversely affect 

the corresponding curvelet coefficient.

� Redundancy of the curvelets.
– Makes this transform less prone to errors in individual entries in the curvelet 

vector.

� Redundancy spreads coherent noise over more coefficients.
– A small subset of localized curvelets contribute to a particular feature.  Thus only 

a small fraction of the ‘noise’ will contribute to the reconstruction.

L2L1

[Anderson et al., 2008]

[Chauris and Nguyen. 2008]

[Douma and de Hoop, 2007]

[Candès and Demanet, 2005]
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Simple Synthetic Reflector w/ Lens Velocity

� We will look at a simple three reflector w/ fault model.

� Our hope is to correct amplitudes in the model.
– Each preconditioning level should improve amplitudes further.

� We also want to increase residual decay per iteration for our 
iterative method.



Simple Synthetic Reflector w/ Lens Velocity

� Simple reflector w/ fault 
reflectivity.

� Low velocity lens model.

� 40 shots.

� We use the linearized 
Born-scattering forward 
modeling operator to 
produce the data.



Simple Synthetic Reflector w/ Lens Velocity

No Preconditioning



Simple Synthetic Reflector w/ Lens Velocity

LSQR Result w/ Level III Preconditioning



Simple Synthetic Reflector w/ Lens Velocity

� Signal-to-Noise Ratio (SNR) to original reflectivity, after one 
iteration.

� Defined as follows, with L2 values normalized to one:

One iteration
SNR

No Preconditioning 0.9414

Level I 1.2779

Level II 1.0652

Level III 1.7166

SNR = 20 log ‖xs‖2/‖xn − xs‖2



Simple Synthetic Reflector w/ Lens Velocity

� Vertical trace at 1424m.

� Each preconditioning 
level is restoring the 
amplitudes closer to the 
original black line.

� Level III (curvelet-based 
diagonal) is doing the 
most significant 
amplitude recovery in 
this case.

Vertical trace near the center of the model.

Original

Level I

Level II

Level III



Simple Synthetic Reflector w/ Lens Velocity

� Residual decay for the data-space and model-space residuals.

� Even after our first iteration of level III preconditioning, we are 
always below the other cases in each figure.

� The red line has already seen one migration-remigration due 
to the curvelet diagonal estimation process.

[De Roeck, 2002]

μk = 20 log ‖Auk − b‖2/‖b‖2 νk = 20 log ‖A∗(Auk − b
)‖2/‖A∗b‖2
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SEG AA’ Model w/ Smooth Velocity

� SEG AA’ salt model.

� Our goal is to improve amplitude recovery, especially for the 
reflectors under the salt model.

� We also want to increase residual decay for our iterative 
method.



SEG AA’ Model w/ Smooth Velocity

� SEG AA’ salt model.

� Smooth velocity model.

� 324 shots.

� Each shot 176 traces of 
6.4s with a trace interval of 
24m.

� Maximum offset of the data 
is 4224m.



SEG AA’ Model w/ Smooth Velocity

No Preconditioning



SEG AA’ Model w/ Smooth Velocity

Level I



SEG AA’ Model w/ Smooth Velocity

Level II



SEG AA’ Model w/ Smooth Velocity

Level III



SEG AA’ Model w/ Smooth Velocity

Level INo Preconditioning

Level II Level III



SEG AA’ Model w/ Smooth Velocity

No Preconditioning



SEG AA’ Model w/ Smooth Velocity

Level III



SEG AA’ Model w/ Smooth Velocity - LSQR Results

LSQR 10 iterations - No Preconditioning



SEG AA’ Model w/ Smooth Velocity - LSQR Results

LSQR 10 iterations - Level III



SEG AA’ Model w/ Smooth Velocity

� Signal-to-Noise Ratio (SNR) to original reflectivity.

� Defined as follows, with L2 values normalized to one:

One iteration
SNR

LSQR results*
SNR

No Preconditioning -1.9803 -0.9939

Level I -1.4147 0.3312

Level II 0.4030 3.2690

Level III 1.3122 3.3230

*LSQR to 10 iterations

SNR = 20 log ‖xs‖2/‖xn − xs‖2



SEG AA’ Model w/ Smooth Velocity

� Vertical trace at 12720m 
through the salt model.

� Each preconditioning 
level is restoring the 
amplitudes closer to the 
original.

� Increase or decrease 
amplitudes, not just a 
direct linear scaling.

� Level III (curvelet-based 
diagonal combination) is 
doing the most 
significant amplitude 
recovery in this case.

Vertical trace near the tip of the salt model.

Original

Level I

Level II

Level III



SEG AA’ Model w/ Smooth Velocity

� Horizontal trace at 
3438m through the 
reflector at the bottom.

� Section where the salt 
model meets the 
reflector.

� Can see our 
preconditioner is 
improving amplitude 
corrections.

Horizontal trace where salt model meets the

bottom reflector.

Original

Level I

Level II

Level III



SEG AA’ Model w/ Smooth Velocity

� Residual decay for the data-space and model-space residuals.

� Even after our first few iterations of level III preconditioning, we 
quickly improve upon the other levels in each figure.

� The red line has already seen one migration-remigration due 
to the curvelet diagonal estimation process.

[De Roeck, 2002]

μk = 20 log ‖Auk − b‖2/‖b‖2 νk = 20 log ‖A∗(Auk − b
)‖2/‖A∗b‖2
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Conclusions

� We can achieve significant residual decay using our series 
of preconditioning matrices.

� Amplitudes throughout the model are recovered more 
accurately to the original reflectivity.

� We do the same amount of work, but get a better result.

� We satisfy Zipf’s Principle of Least Effort!



Seismic Laboratory for Imaging and Modeling

Speculations on Real Data

� On real data our curvelet-based diagonal estimation should 
greatly improve the image.

– Curvelets add robustness to the presence of coherent noise.

– Also moderates errors in the linearized Born modeling operator.

� Small shifts over the support of a curvelet will not adversely 
affect the corresponding curvelet coefficient.

– Allow imperfections in the velocity model.
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SLIMpy Web Pages

� More information about SLIMpy can be found at the SLIM 
homepage:

� Auto-books and tutorials can be found at the SLIMpy generated 
websites:

http://slim.eos.ubc.ca

http://slim.eos.ubc.ca/SLIMpy/
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